• [口頭報告]Advancements in Iron-Based Oxygen Carriers for Chemical Looping Combustion: From Bauxite Waste to Valuable Resources
    00
    days
    00
    hours
    00
    minutes
    00
    seconds
    00
    days
    00
    hours
    00
    minutes
    00
    seconds

    [口頭報告]Advancements in Iron-Based Oxygen Carriers for Chemical Looping Combustion: From Bauxite Waste to Valuable Resources

    Advancements in Iron-Based Oxygen Carriers for Chemical Looping Combustion: From Bauxite Waste to Valuable Resources
    編號:384 訪問權限:僅限參會人 更新:2024-05-15 19:49:23 瀏覽:127次 口頭報告

    報告開始:暫無開始時間 (Asia/Shanghai)

    報告時間:暫無持續時間

    所在會議:[暫無會議] ? [暫無會議段]

    暫無文件

    摘要
    Chemical looping combustion (CLC) is a cutting-edge approach that enables power generation and carbon capture to occur simultaneously. For CLC technology to be commercially viable, it's essential to have oxygen carriers (OCs) that are not only durable and reactive but also cost-effective. This is because the degradation or sintering of OCs can reduce the efficiency of the process and lead to higher costs. Despite extensive research on common materials like iron, nickel, and copper-based OCs, there has been a lack of focus on improving both the durability and reactivity of OCs, particularly concerning the risk of element migration during degradation.
    At the University of Kentucky, researchers are developing iron-based OCs, utilizing red mud from the plentiful waste of bauxite, to implement affordable chemical looping methods. In the CLC process using iron-based OCs, iron transitions between oxidation states within the reactor, which may cause degradation and potential iron migration, impacting the particles' surface structure, porosity, and strength.
    The process of making use of the fine particles resulting from OC degradation in CLC has not been thoroughly explored. Present findings indicate that it's feasible to separate and concentrate iron from these fines, achieving an iron concentration as high as 89% Fe2O3 from bauxite waste fines that originally contained 43% Fe2O3. This method turns the by-products of CLC attrition into a valuable commodity. Additional details will be presented at the upcoming conference.
    關鍵字
    Iron-based oxygen carrier,Chemical looping combustion,Attrition,Iron enrichment,Bauxite waste
    報告人
    Neng Huang
    University of Kentucky

    發表評論
    驗證碼 看不清楚,更換一張
    全部評論

    聯系我們

    投稿事宜:張老師
    電話:0516-83995113
    會務事宜:張老師
    電話:0516-83590258
    酒店事宜:張老師
    電話:15852197548
    會展合作:李老師
    電話:0516-83590246
    登錄 注冊繳費 提交摘要 酒店預訂
  • 成人视频