• [張貼報告]Domain extended attention network for ultra-short-term wind power prediction
    00
    days
    00
    hours
    00
    minutes
    00
    seconds
    00
    days
    00
    hours
    00
    minutes
    00
    seconds

    [張貼報告]Domain extended attention network for ultra-short-term wind power prediction

    Domain extended attention network for ultra-short-term wind power prediction
    編號:364 訪問權限:僅限參會人 更新:2024-05-27 08:58:34 瀏覽:162次 張貼報告

    報告開始:2024年05月30日 15:40 (Asia/Shanghai)

    報告時間:20min

    所在會議:[S5] Smart Energy and Clean Power Technology ? [S5-1] Afternoon of May 30th

    暫無文件

    摘要
    Ultra-short-term wind power prediction plays a key role in countless fields, from power forecasting and environmental science to industrial processes . Capturing ultra-short-term dependency and seasonal patterns in time series data is an important issue to improve the accuracy of time series data prediction. We propose Domain Extended Attention Network (DEAN) to effectively capture the characteristics of ultra-short-term dependence through reducing redundancy and expanding receptive field, namely Domain Extended Attention, while maintaining high attention to maintaining computing efficiency and reducing the impact of redundancy. In this paper, by comparing the DEAN model with other six different baseline models on four different prediction lengths, the prediction performance of DEAN model on more than three prediction lengths has reached the current SOTA level, especially on the 96 and 720 prediction lengths, the performance of DEN model is 14.29% and 5.28% higher than that of the second best model respectively.
    關鍵字
    ultra-short-term forecasting; wind power prediction; attention, redundancy; receptive field.
    報告人
    Likang Lin
    South China Agricultural University

    發表評論
    驗證碼 看不清楚,更換一張
    全部評論

    聯系我們

    投稿事宜:張老師
    電話:0516-83995113
    會務事宜:張老師
    電話:0516-83590258
    酒店事宜:張老師
    電話:15852197548
    會展合作:李老師
    電話:0516-83590246
    登錄 注冊繳費 提交摘要 酒店預訂
  • 成人视频