• [口頭報告]Off-policy reinforcement learning for input-constrained optimal control of dual-rate industrial processes
    00
    days
    00
    hours
    00
    minutes
    00
    seconds
    00
    days
    00
    hours
    00
    minutes
    00
    seconds

    [口頭報告]Off-policy reinforcement learning for input-constrained optimal control of dual-rate industrial processes

    Off-policy reinforcement learning for input-constrained optimal control of dual-rate industrial processes
    編號:28 稿件編號:251 訪問權限:僅限參會人 更新:2024-05-20 09:56:41 瀏覽:146次 口頭報告

    報告開始:2024年05月30日 15:40 (Asia/Shanghai)

    報告時間:20min

    所在會議:[S4] Intelligent Equipment Technology ? [S4-2] Afternoon of May 30th-2

    暫無文件

    摘要
    Real industrial operating systems are not ideally immune to unmodeled dynamics, and industrial processes usually operate on multiple time scales, which poses a problem for operational optimization of industrial processes. In order to better address these difficulties, a composite compensated controller is designed to solve the input-constrained optimal operation control (OOC) problem in dual time scales by integrating reinforcement learning (RL) techniques and singular perturbation (SP) theory. Within this control framework, a self-learning compensatory control method is proposed to optimize the operational metrics of a dual time-scale industrial system with uncertain dynamic parts to the desired values. Finally, the effectiveness of the method is verified by an industrial mixed separation thickening process (MSTP) example.
    關鍵字
    Reinforcement Learning, Dual Time Scales, Optimal Operational Control, Singular perturbation Theory
    報告人
    Haoran Luan
    LiaoNing Petrochemical University

    稿件作者
    皓然 欒 遼寧石油化工大學
    瑞元 鄒 遼寧石油化工大學
    金娜 李 遼寧石油化工大學
    發表評論
    驗證碼 看不清楚,更換一張
    全部評論

    聯系我們

    投稿事宜:張老師
    電話:0516-83995113
    會務事宜:張老師
    電話:0516-83590258
    酒店事宜:張老師
    電話:15852197548
    會展合作:李老師
    電話:0516-83590246
    登錄 注冊繳費 提交摘要 酒店預訂
  • 成人视频