Machine learning prediction of calorific value for coal based on the hybrid analysis
編號:180
稿件編號:356 訪問權限:僅限參會人
更新:2022-05-12 16:26:17
瀏覽:380次
口頭報告
摘要
Abstract: As one of the most important indicators of coal, calorific value(CV)not only determines the value of coal product, but also has a significant impact on the further processing and utilisation of coal. Traditional methods of obtaining prediction data suffer from a range of problems such as too many input variables, low prediction accuracy of a single analysis method and lack of sensitivity analysis of input variables. In this paper, a novel hybrid analysis was presented to predict the CV of coal. Pearson correlation coefficient (PCC) was used to remove correlations between variables in order to provide a suitable combination of input variables for ML models. The results showed that based on the optimal combination of input variables (ash, Fe, Mg and Na), RF model provided a better regression, better fit and better robustness on the testing set than the other three models when the performance indicators and the number of input variables were considered. In addition, sensitivity analyses of input variables showed the relative importance of individual variables and the way in which each variable affects the output variables. The present work provided novel insights and ideas for understanding the prediction of the CV of coal.
關鍵字
Keywords: Machine learning;Calorific value;Hybrid analysis;Pearson correlation coefficient;Sensitivity analysis
稿件作者
Zhiqiang Li
中國礦業大學化工學院
Liang Dong
中國礦業大學化工學院
發表評論